1 SURFACE STATES IN SUPERCONDUCTING INDIUM

impedance based on the wave functions and density of
states of the Pincus surface states.

Garfunkel’s simple model of a #kpr- v, energy shift, as
we have shown can account equally well for the im-
portant frequency-temperature scaling of the data. But
it is most certainly a much oversimplified. description,
especially in view of what is known about electron
surface states in normal metals. The calculation based
on cylindrical Fermi surface geometry and the #ky-v,
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shift reproduces the derivative peak features, but falls
short of detailed agreement with the experiments.

ACKNOWLEDGMENT

We gratefully acknowledge the collaboration with
Avid Kamgar in the section on the surface-impedance
calculation. Miss Kamgar carried .out the numerical
integrations and contributed to the interpretation and
analysis of the impedance curves.

1 FEBRUARY 1970

Bardeen-Kiimmel-Jacobs-Tewordt Theory of a Vortex near T.}

RosertT M. CLEARY*
Department of Physics and the M aterials Research Laboratory, University of Illinois, Urbana, Illinois 61801
(Received 29 September 1969)

An expression for the free energy of a superconductor containing magnetic flux is derived for tempera-
tures near T'. To order T.—7, the result is identical to that of Ginzburg-Landau as derived by Gor’kov.
A term proportional to (7'.—T)*/?is shown to vanish in perturbation theory. The validity of the variational
functions of Bardeen ef al. is verified near T'; where the critical value of « is almost identical to 1/VZ.

I. INTRODUCTION

T has been shown by Bardeen, Kiimmel, Jacobs, and
Tewordt how a variational calculation for the free
energy of a superconductor containing magnetic flux
may be performed.! They begin with a variational
principle of Eilenberger.? Two trial functions for the
order parameter and magnetic flux are taken for a
superconductor containing a vortex and the result is
minimized with respect to a parameter d for the order
parameter and s for the magnetic flux. The variational
functions of Ref. 1 are A(r)=A, tanh(dr/¢) and
(e/c)A(r)=cosh(sr/£)/(2r), where £=pp/mrA, is the
temperature-dependent coherence length, and A, is the
order parameter far from the vortex core in a gauge
where A(7) is real. This calculation provides the varia-
tional values of s and d for a given «, the Ginzburg-
Landau (GL) parameter, and also the lower critical
field H,; may be derived as a function of k¥ by equating
the vortex-state free energy to that of a superconductor
in the Meissner state.? These calculations have been
performed at O deg and can be extended to finite tem-
peratures. Here we examine the free energy of a super-
conductor containing a vortex at temperatures near 7.
We assume that the free energy per unit length of
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vortex vanishes as 1—7/T, as Gor’kov and Eilenberger
have shown.24

The coefficient of 1—7"/T is exactly proportional to
the GL free energy. There is also a term of order
(1—T/T.)"2 which should vanish identically for any
given smooth variational functions. We are only able
to show that it vanishes in lowest-order perturbation
theory at this time. Numerical calculations indicate
that this term does indeed vanish.?

In Sec. IT we summarize some of the basic equations
of Bardeen et al. and proceed to isolate the free-energy
terms to order (1—7/T.)Y2 and 1—T/T,. The coeffi-
cient of the linear term is calculated explicitly and is
shown to be proportional to the GL free energy.

In Sec. III it is shown that the leading term in the
temperature expansion will vanish identically in lowest-
order perturbation theory for arbitrary, analytic, varia-
tional functions. This is unsatisfactory and it should be
shown that the term vanishes for large variational func-
tions. In Sec. IV the variational functions of Bardeen
et al. are employed to calculate H.i(x) using the GL
free energy. The value of ., the critical GL parameter
separating type-I from type-II behavior is close to 1/VZ.

II. FREE ENERGY

The free energy of a superconductor may be derived
from the expression!

4¢L. P. Gor’kov, Zh. Eksperim. i Teor. Fiz. 35, 1918 (1959)
[English transl: Soviet Phys.—JETP 6, 1364 (1959)].
5 A. Jacobs (private communication); and (to be published).
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Gs=—2T Y In[2 cosh(E,/2T)]

+V1 / | A(7)|2%dPx+ (8m)~* / (H(r)—HJ)*dx, (1)

where E, are the energy eigenvalues (£,>0) of the
Bogoliubov equations.® V is the superconducting inter-
action parameter, H () the magnetic field of the vortex,
and H, the externally applied field.

To obtain rapid convergence of the sum over #, one
may calculate the free-energy difference with the
Meissner state

AG,=—2T Y In[ (coshE,/2T)/(coshE,'/2T)]
7 [T1a0)-a30
+ (87)1 / H2(r)d*— (c/4e)H, L, (2)

where E, and E, are the energy eigenvalues for a super-
conductor containing a vortex and for one in the
Meissner state.

The WKB] approach reduces the two coupled second-
order Bogoliubov equations to two first-order ones.
The bound-state spectrum and scattering solutions con-
tribute to AG in the following way :

00

1 T
AG,= —(LT&)N (O)sz'lr?E / da sin’a / db
0

0

X3 (2T/A) In[ (coshE:(6)/2T)/ (coshA,/2T)]

1 T 0 o0
+(Lxg®)N (O)AwZWE ] da sin®a / db / an
0 0 1

X[Z(\b)—CB)(N—1)717]
Xtanh(\A,/2T)+AG,., (3)
C(d)=Im A\=Z(\,0),
A>®

where

and AG,, is the contribution of the magnetic field to
AG;. E;(b) is the ith branch of the bound state spectrum
and M\ is the reduced energy E/A, of the scattering
states. & is related to the magnetic quantum number,
and « is the angle of the trajectory of the excita-
tions with the z axis. L is the length of vortex.
Bergk has shown that the term in C(b) exactly cancels
V-LSTAQ@) |2— ALt ]d?e. 17
Expanding AG; in terms of order

(Aw/ZT)N(l_T/Tc)Uzy

8 N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, 4
New Method in the Theory of Superconductivity (Consultants
Bureau, Inc., New York, 1959).

7 W. Bergk and L. Tewordt, Z. Physik (to be published).
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we have

A6 = (LW 003w (8/21) [ dasi
0

00

X /0 db{%w[l—)@(b)]

+ / NNZ (\,0)—C(b) ()\2—1)””2:]} . @

From previous work by Gor’kov and Eilenberger,?4
we are to believe that this term vanishes. The
lowest nonvanishing term should be of order (A./27)?
~((1—=T/T.). AGy is of this order and AG;, the bound-
state contribution, only gives terms of order (A,/27)"/2,
where 7 is an odd integer. The term we seek must be
obtained from the scattering-state contribution.

If one expands

2(\B)=C(®)/ND(B)/M+0(1/N%),  (5)
C(b)/ (\2=1)12=C()/N+C(0)/2+0(1/5%), (6)

the only term which can contribute to order (A,/2T)?
is proportional to [D(8)—C(8)/2]x~3. For example, the
term O(1/\%) only contributes to (A,/27)* in even
powers. We have

“ d\ A,
— tanh—
1 N T
A, AN? 7 d\ tanh) A\
S (22 o
2T 2T/ Jo X\ cosh\ 2T
Therefore the leading term as 7' — T is
AN\% 7 d\ tanh)
AG®=— (Lr8)N (O)Aw%w(——) —
2T/ Jo A cosh®

00

X /0 " dasin'a /0 d[D(B)—1C()]

1
+— /Hz(r)d3r—iHaL. (8)
8w 4e

We now solve for £(\,0) to order A—3 using the WKB]
equations,

dw1

—+8(x) cosw; coshws=A+F(x), 9)
x

dwz

—=§(x) sinw; sinhws. (10)

dx

Here x is defined by 7/¢{=(r/2) sina(x?4-b?)'/? and
8(x)=Ax)/Aw. F(x) is given by bg(x)/(82+=?) with
g(r)=2erA (r)/c, and A(r) is the magnetic vector po-
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tential. Writing

a b
= + N (11)
AF (A F)?
A B C

sechws= 4+, (12)

AM-F * (\+F)? * (A+F)?

one may easily verify by direct substitution that
a=—¥8/5,
B=0,

4=3,
C=—8"+%5"/s.

(13)
(14)

These are the only terms needed to calculate C(d)
and D(b).
The function Z(),d) is defined as follows:

Z(b)=0(b)+o(—0), (15)
where
D)=t P O OO [ do
0

X[6(x) coswi®(x) sinhwa® (x) —sinhws( )], (16)

and
PO w0y OF1
gli(0)=—1an‘1ltan-—[tanh»—] } 17
2 2

Using

sinhwg(®0)=A— — — —
2n 8M3
one may show that

ZND)=EF(0) £+ (0)+ & (0)F+&(0)~
+o1t(0)+wi (0)-}—/ dx{ —&(x) coswit(x)

X[% sechwst(x)+3% sech¥wst(x)]
—8(x) coswr (x)[% sechws (x)+% sech®ws™(x)]

1 1 1
ot —} +0(—) )
N4N A
A simple calculation will demonstrate that
g0y HEH(0)+E (0 £ (0)~
tert(0)+wr (0) =8 (0)5(0)/N+0(1/M).  (19)
But §’(0) =0, if 55%0. We have therefore
C(b)=/ dx(1—-8%), (20)
and ’
D(b)=/ da[2(1—56%)—F2*—8"7+3(8%)"]. (21)
0
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Equation (20) was first derived by Bergk.!” The term
proportional to (§%)” is identically zero as one may
verify by straightforward integration.
The tabulated integral
@\ tanhA  7¢(3)

o A cosh®\ w2

simplifies the expression for AG,®, which becomes

AG,® = — (Lx))N (0)A 2wk (AL/2T)?

X7§‘(3)7r_2/ da sin%z/ dbf dx
0 0 0

X[62— 15 (1 —84) — 2% —25"]
+(81r)—1/H2d3x—— (¢/4e)H,L. (22)

The order parameter § is a function of (¥>+5?) and the
integration over b and x can be converted to one over
the radial coordinate . We have finally

00

AG,(2)=21rL|\I/ol2/

0

rdr { (4m)~'[ (do/dr)?
+ g1+ o’ | *—D)+5'| (¢*—1)]

+ (8r) ! / dix— (c/4e)HL, (23)

with
I\I/UI = 7g‘ (3)ZVA002/8 (TTC)2 )
and
la,l = (1_T/Tc)6(7TTc)2/7§'(3)EF:
where

N =pg/3n?

is the electron density. Equation (23) was first derived
by Gor’kov using a Green’s-function technique.*

III. PERTURBATION THEORY

It is desirable to show that AG® =0 for arbitrary
(analytic) variational potentials employed in calculating
AG. For a vortex these potentials, 6(r) and ¢(r), are
large and what we have to say here cannot really apply.
For in fact we show that if

and

F(x)=eg(x,0), (25)

that the term in AG® linear in € vanishes. It remains
desirable to show that AG™ vanishes when e~1.

The potentials of Egs. (1) and (2) could possibly
represent those of a magnetic impurity in a super-
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conductor. To keep close ties with the vortex problem
however, it will be assumed that the geometry of our
problem is cylindrical. In particular we show that

)\l(b) =E1(b)/Aw21 — 622(1)) ,

and that to order ¢, Z(\,0) =C(d)/(\2—1)1/2,

We begin by considering the WKB] equations for a
bound state, suppressing the index & from f and g
so that .

dw
— +[1—¢f(x)] cosw=A+eg(x). (26)
dx

Performing an expansion of w in powers of €
w=w®Fe®4...
and keeping only the first two terms one may show that
w®=cos I\,
and that w® satisfies the equation

doo®

—oWA=M)P=e(\f(x)+g@).  (27)

dx

This is a simple, linear, first-order differential equation
with constant coefficients and is easily solved. The
result is

o () = —exp[ (1 -2tz Te f [h /() +g ()]

Xexp[— (1 —N)2x Jdx’, (28)
and at x=0, we have
o0 =cosh—e[ D) +5(s)]
0
Xexp[— (1 —=N)Y2x]dx+0(e2). (29)

In order for the wave functions to be finite at the
origin, =0, w(0) must vanish or be an integral multiple
of m. The theory of a linear turning point in WKB]
theory brings this result about.

We expand A=1—\®_ and the eigenvalue equation
is simply

=1 / ) [f(x)+g(x)]dx]2 (30)

to lowest order in € so that there is no bound-state con-
tribution to AG® linear in e.

For the scattering states, A>1, the function w is in
general complex:

Ww=w;—Iws.

Again performing an expansion of w in powers of € and
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keeping only terms linear in ¢, we have

w01P=0, w,®=cosh™\, (31)
o= —espl—i(2=17de | [M(&) ()]
Xexp[z(N—1)12%x"]dx’, (32)
and
a(0)=—¢ / [V @)+¢)]
’ Xexp[i(N—1)"2x]dx.  (33)

The expression for Z(A,d) is given by Eqgs. (15)-(17).
To lowest order in € the integral in o(d) is given by

1(6)= / daDwe® —e(2—1)127(2)],  (34)

and to lowest order in e

& (0)+£ (0)=re(N?—1)712
Xf [Af(x)+g(x)] cosL \2—1)12x Jdx.  (35)

The integral I(d) is equal to

I(b)=f dx[)xe Im exp[ —1(\2—1)12x ]

X/ [Af (") +g ()] expli (A —1)"2" Jda’
—e(2—1)2f(x) | . (36)

Performing an integration by parts on the first term
of Eq. (36) we have

I1(b)= *)\é{ — ()\2——1)“1/2/ A f(x)+g(x)]dx
Foe-17 [ D6+

Xcos[(kz——l)”zx]dx]—e()\2—1)”2/ fx)dx, (37)

so that

a(b)=Ne(\>— 1)’1’2/

0

00

g(x)dx
+e(A2—1)112 / f(@)dx. (38)

The function g(x,d) is antisymmetric in b,
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and we have

2(\B) =0 (8)+o(—b)=2e(A2—1)-1/2 / F(®)dz. (40)

Now the function C(b) is given by

c)= f [1—8(x) Jdw=2e / f(@)dz, (41)

so that
Z(\b)—C(d)(1—N2)~12=0. (42)

It does not seem possible to perform a Taylor ex-
pansion of AG® in powers of € beyond the linear term.
It would seem necessary to adopt some other procedure
to show that AG® =0 for ex~1.

A numerical demonstration of AG®=0 has been
made for the variational functions given in the
Introduction.®

IV. GINZBURG-LANDAU FREE ENERGY

In the GL region, 7>~T, the free-energy difference
between a superconductor containing one vortex and a
superconductor in the Meissner state, is given by
Eq. (23). The variational potentials employed by
Bardeen et al. are listed in the Introduction. The ex-

pression for the free-energy difference can be simpli-
fied to

AG, T %
—_—= (1 —~-——> { / dr[%vr?r sechr
(Lwg)N (0)A. T./\J,

sr\tanh? s\2 1
+1ix2 SeChz(E) +7r sech“r(;) -——}

7 s2

Hcl
+0.77K232—2\/7K;} . (43)

c

The free energy is minimized with respect to s
and s/d:

The GL parameter « is solved for in terms of s and s in
terms of s/d. H.1/H,. can then be solved for in terms of
k by letting AG,=0. A plot of H./H, versus k is
shown in Fig. 1.
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Fic. 1. Plot of H versus & for a clean type-II superconductor
near T'.. The variational functions of Bardeen ef al. have been
employed in the calculation. The critical value of « is found when
Ha=H, We find x.=1.165. This corresponds to a Ginzburg-
Landau value of . near 1/V2.

The critical value of « is found to be «.(7)=1.165,
with the defining equation

k(T)=c/2V2eH .(T)£(T)2. (44)

Note that if we take the usual definition of kgr(7%),
first introduced by GL and defined with

Jim £02.(1) =—(7¢ ()/3) P T/ (To—TY ]2
~Te 4y

~0.739&[ T/ (To—T)JH2, (45)

where Iny is Euler’s constant, instead of using the
parameter

1
CED)=—(5 @)/ Te/ (Te—T) ]
lim %

T->Te ﬁ0.576£0[Tc/ (TB_ T):|1/2 ’ (46)

we have
KGL(Tc)/K(Tc)=6/7TZ; (47)

so that kqr.(T.)=0.7082~1/v2. This would indicate
that the variational calculation is a good one, at least
near 7.
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